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The flee spatial motion of a blunted body of revolution through a large cloud of heated gas (a thermal) floating in a stratified 
atmosphere is investigated. Extended composite bodies of the sphere-cone type are considered, the bee supersonic motion of 
which is usually associa'ted with small angles of attack. To determine the trajectory of the body and its orientation in space, a 
highly cffectivc numerical method is proposed which is an extension of the spatial ease of a previously described method [1] for 
the two-dimeusional fo~aulation and which is based on the simultaneous solution of the problems of the flow around a body 
and its motion. Using t~s method the effect of a floating thermal on the trajectory and orientation of the body in space and the 
stability of the flight is investigated in the three.dimensional formulation. The chan~e in tile trajectoly of the body and its orientation 
in space as a function o:~ the position of the centre of mass is considered. It is shown that the presence of a thermal may lead to 
a considerable change in the trajectoly of the body and to a loss in flight stability. Copyright © 1996 Elsevier Science Ltd. 

A similar problem was considered previously [2] assuming that the trajectory of motion of the body 
lies in the plane of symmetry of the thermal. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We will assume that, at the initial instant of time, a cloud of heated gas was formed in a stratified 
atmosphere of the Earth with the following parameters 

r(h, r) = To (h, r) + (r,  ffi, - r,, (h)) exp(-(/R7 ~ )2) 

where Rr = 4.8 kay, Tmax = 104 K, Ta(h) is the temperature of the undisturbed atmosphere at an altitude 
h, and l is the distmlce from the centre of the spherical volume. The position of the temperature maximum 
corresponds to an altitude of H = 20 km. 

The cloud float.,; under the action of the Archimedes force, forming a vortex ring. The formation of 
the vortex is accompanied by intense turbulent mixing of the cold and hot layers of air. 

Fifteen seconds after the cloud begins to float a body in the shape of a truncated cone on a sphere 
with a blunt raditu; R0 = 0.1 m, a semiaperture angle ~ = 15 °, a length L = 2 m and a mass of 1 t enters 
the cloud. It is assumed that the centre of mass of the body is at a distance Lc from the vertex. During 
the initial period of time (when the thermal no longer affects the body motion) the plane of the trajectory 
is at a sighting dislxmce of 500 m from the axis of symmetry of the thermal, which is situated in the first 
half-space with respect to the direction of the body motion. The instant when the body is at a distance 
of 6000 m from the axis of symmetry of the thermal will henceforth be taken as the origin. At this instant 
the body is at an ~dtitude of 20,000 m and moves horizontally with a velocity of 2000 m/s. The angle of 
attack at the initial instant is zero, which corresponds to the situation where the pitch angle and the 
angle of inclination of the body's trajectory are equal, and the yaw and course angles are also equal. 
We will consider lwo values of Lc = 50 era and L c = 140 em, representing the cases of large and small 
margins of stabili'ty of the body, respectively. 

2. M E T H O D  O F  S O L U T I O N  

A numerical method of calculating the convective--diffusion air flow in the region of a thermal is 
described in [3]. The motion of a blunt body with a specified rectilinear trajectory is also described, as 
well as the particular features of the gas flow in the shock layer around the body. 
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The trajectory of motion of the centre of mass of the body is given by the following system of equations 
[41 

~:=vsin0, tp---U--cosOsin¥, ~.=V--cosOC°S~ 
r r cos tp 

mff=  Fr + mrto~ (cos tp sin 0 - sin tp sin ~ cos 0) cos q) 

mvO = F n + m u  2 cos O + 2myra 3 cos q) cos ~ + 
r 

+mrt~2 (sin tp sin esin ¥ + cos q)cos ¥ )  cos q) (2.1) 

mv~cos0 = F k - m o  2 tgtp cos2 e c o s ¥  - 
r 

-2 mot03 (sin tp cos 0 - cos tp sin 0 sin ¥ )  - mrto] sin q) cos q~ cos ¥ 

The system of equations (2.1) is written in a geocentric non-inertial spherical system of coordinates, 
rigidly connected to the Earth; the centre of the system of coordinates coincides with the centre of the 
Earth. Here r is the radius vector of the centre of mass, r = I r I, tp, ~ are the geographical latitude and 
longitude, respectively, v is the modulus of the vector v of the velocity of the mass centre, 0 is the angle 
of inclination of the trajectory, ~ is the course angle, m is the mass of the body, toa is the angular velocity 
of rotation of the Earth, the right orthonormalized vector triple ('r, n, k) is the accompanying basis of 
the trajectory of the mass centre of the body (.r is the tangential unit vector, v = v • ,r, n is the normal 
unit vector and k is the unit vector of the binormal to the trajectory), and Fx, F,,, Fk are the components 
of the main vector F of the forces acting on the body in the associated basis. The initial values of the 
quantities tp, g, 0 and ~ are assumed to be zero. 

The main vector of the forces F will be represented in the form F = 1~ + 1~, where the first term is 
the resultant of the aerodynamic forces acting on the body, and the second term is the gravitational force. 

The orientation of the body in space is governed by Euler's system of equations of motion of a body 
[51. 

We will assume the distribution of the body mass to be axisymmetrical. We will also assume that the 
angular velocity of rotation of the body around its own axis of symmetry is sufficiently small so that we 
can neglect the aerodynamic moments of a viscous nature parallel to the axis of symmetry of the body. 
This assumption reduces to the requirement that the angular velocity of natural rotation of the body 
is small at the initial instant. In the calculations, the results of which are given below, the angular velocity 
of rotation of the body at the initial instant is taken to be zero for simplicity. 

The gas motions about the body were described by the complete system of equations of a spatial 
viscous shock layer (see, for example, [6, 7]). To solve this system of equations we used the small- 
parameter method [7], the small parameter here being the angle of attack, in conjunction with the global 
iteration method [6, 7]. 

We thereby obtain the following: the drag Cx = G (°), the lifting force Cy = ctCy (1) and the aero- 
dynamic moment Mz = tzMz (1). Here C~ (°), C/1) and M~ 1) do not depend on the value of the angle of 
attack tz. 

In the spatial formulation of the problem the angle of attack is a three-dimensional vector or, which 
is governed by the vector velocity of motion of the centre of mass of the body with respect to the medium 
V and the unit vector of the axis of symmetry of the body i, directed from the centre of mass of the 
body to the vertex. The modulus of the spatial angle of attack is 

ct = arccos(VV -I, I), 

while the direction is defined by the vector [V, !]. Hence, the spatial angle of attack is 

a [V,I] arccos(VV_l,l) = ~ V -j [V, !] 

(since the angle of attack is small). 
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The total aerodynamic force 1~ acting on the body is the sum of the drag F" and the lift ld, where 

F r = _  P V2S C x l ,  F I = oV2S c(vl)tot, i] 
2 

(p is the density of the free stream and S is the cross-sectional area of the body at its base). 
The total moment M of the forces acting on the body is the sum of the aerodynamic moment M", 

related to the orientation of the body with respect to the free stream, and the damping moment M a, 
which occurs due to the rotational motion of the body with respect to the medium. 

The aerodynamic: moment of the forces about the centre of mass of the body is 

M a  1 ^ V2SLMO)ot = '2P z 

When Mz (0 has a positive sign the moment of the forces is in the same direction as the angle of attack, 
which leads to an increase in the latter. The flight in this case is unstable. 

The damping moment 

M a = IpVSL2MnI~.L 

where Mta is the d~mping moment coefficient and II± is the component of the angular velocity of rotation 
vector of the body f~, orthogonal to the axis of symmetry of the body. (The effect of the rotation of 
the body around it.'~ own axis of symmetry on the gas motion is neglected.) To take the damping moment 
into account in the general case one must solve the unsteady flow problem. In this paper the coefficient 
Mn was found using Newton's theory [8], which gives acceptable accuracy for Mach numbers of the 
free stream M** = 3. The characteristic ratio Md[M = was of the order of 10-2-10 -3 in the calculations, 
so that the damping moment could be neglected in practice in our formulation of the problem. 

The whole system of governing equations was solved as follows. 
We write the system of equations of the body motion in the form 

d A=~C(x Cqy M z ~ (2.2) ~-£~=F(gA, Q), o) I) O) r 

Here ~ is the required vector which completely describes the kinematic characteristics of the body 
motion (the coordinates, velocities and angles); the vector Q has its own components, which are required 
to calculate the parameters of the thermal (the horizontal and vertical components of the flow velocity 
in the thermal, and the density and temperature of the air at the point of space and the instant of time 
considered), and A is the vector of the aerodynamic coefficients, where A = A(~, Q), Q = Q(~, t). The 
vector Q depends on time due to the gas motion in the thermal. 

At the initial instant the system of equations of the viscous shock layer is solved for specified free 
stream parameters. Then, during a time At s the system of ballistic equations is integrated for a specified 
position and velocity of the centre of mass, and also the body orientation in space with fixed values of 
Cx, C(y 1) and M(~ ) and variable angle of attack ~. The step At s is determined by the characteristic time 
of the changes irt the free stream parameters, which considerably exceeds the characteristic time of 
variation of the ~.ngle of attack (the body undergoes oscillations about the position corresponding to 
a = O), as a consequence of which the integration step of the system of ballistic equations Atb ,~ At r 

n n + l  n + [  n n Consider system (2.2) in the time interval [t , t ] where t = t + (Ats). We will assume that at 
the instant t" we know the values and derivatives with respect to time of the vectors g and Q, obtained 
when system (2.:!) is integrated during the preceding time interval [t "-1, tn], and also the values A n-1 

n n 1 n n and A of the vector A at the instants of time t - and t . We put ~ = ~(t"). 
The solution of system (2.2) in the interval [t n, t "+I] is found using the "predictor-corrector" scheme. 
At the "predictor" stage we integrate the system 

d 
~-t~o = F(~,U~(t),Gn(t)), ~ ( t  n) = ~n (2.3) 

where 
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A n _ A  n-I 
Ug (t)= An 4 ( ~ g ) n - I  ( t - tn )  

and G"(t) is the locat spline, which approximates the function Q(t) in the interval [t n, t"+l], constructed 
from the values of the function Q(t) and its derivatives at the points t" and t "+I. 

At the "corrector :~ stage we integrate the system 

d~= F(~Un(t),G.(t)), ~t")= ~n (2.4) 
dt 

where 

Ag +I _A ~ 
U n(t)= A n + (t-t n) 

(At~). 
A~ +1 = A ( ~ + l , Q ( ~ + t , t  "+I)) 

~+1 is the value of the solution of system (2.3) when t = t n+l, and A~ +1 is the value of the vector A at 
the instant t = t "+ 1, which is obtained from the solution of the problem of flow with free stream 

n+l  n+l  .+1  parameters defined by the vector ~ . In view of the closeness of the values of A = A(~(t ), 
n+l  n+l  .+1 n+l  n+2 n+l  n+l  Q(~(t ), t )) and A~ , to solve the problem in the time interval [t , t ] we assume A = A~ . 

Systems (2.3) and (2.4) are solved by the method of successive approximations, which is realized after 
2-4 iterations with an error of less than 1%. Here, we take as the initial approximation for G"(t) at the 
"predictor" stage the function 

d 2 t . )2  Gg (t) = Q(t") + d Q(t . )(t - t n) + ~ t  2 Q(t" )(t - 

Integration of s)stem (2.4) with an accuracy of O(At2g) gives a solution of the initial system (2.2). 
At each iteration of the method of successive approximations, the system of equations (2.3) and (2.4) 

was integrated by a Runge-Kutta method of third order of accuracy in At b. Note that system (2.2) is 
hard, since the characteristic times of variation of the required quantities in the equations, from the 
definition of the body orientation, is much less than in (2.1). However, at each iteration of the 
Runge-Kutta method, after linearizing the moment M of the forces and the components of the vector 
f~ on the right-hand sides of Euler's equations of body motion, the latter can easily be integrated 
analytically, which considerably reduces the requirements imposed on the integration step At b. 

In view of the fact that, in each subsequent solution of the equations of the spatial viscous shock 
layer (over a time interval Atg), we used a good initial approximation from the preceding solution, 3-5 
global iterations in all were required for convergence. 

The characteristic ratio Atb/Atg was 10-2-10 -3. The time step Atg was assigned values of 0.2-3 s depen- 
ding on the rate of variation of the free stream parameters along the flight trajectory. 
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A typical time taken to calculate the interval of physical time Atg was 35--40 min on an IBM 386/387 
computer. 

3. R E S U L T S  

For the values of Lc considered, the centre of pressure in the unperturbed atmosphere is behind the 
centre of mass, and the body flight is statistically stable. When the body moves to the centre of the thermal 
the density of the free stream falls rapidly while the temperature rises, and this leads to a reduction in 
both the Mach number and the Reynolds number Re,. 

The reduction in M** for a fixed value of Re** should lead to a displacement of the centre of pressure 
towards the cone vertex. At the same time, as shown in [2], a reduction in Re** for fixed M.. causes a 
shift in the centre of pressure in the opposite direction. Nevertheless, the overall effect of a change in 
both M.. and Re** along the trajectory leads to a displacement of the centre of pressure towards the 
cone vertex, which reduces its stability. Here, in the neighbourhood of the centre of the thermal, the 
centre of pressure is ahead of the centre of mass for Lc = 140 cm and the body flight becomes statistically 
unstable. This may lead to inversion of the body [2]. 

During its motion the body may undergo oscillations about the position corresponding to zero angle 
of attack. Here the amplitude of the oscillations of the angle of attack is determined by the margin of 
stability of the body, which can be seen from Figs 1 and 2, where we show, for Lc = 50 cm and Lc = 
140 cm, respectively, the projections CZl, o~, ct3 of the vector of the angle of attack a onto the axis of a 
local system of coordinates with basis (rxl rx 1-1, r~l r~ 1-1, rr -1) as a function of the time of flight. (The 
thick curves represent graphs corresponding to the motion in an undisturbed atmosphere.) In the second 
version, which represents the case of a small margin of stability, the body is oriented extremely slowly 
in the direction of the free stream. Excitation of the oscillations of the components ct I and ct 3 is due 
to the body entering the region of the thermal along a trajectory that does not lie in its plane of symmetry 
and is the reason for the change in the initial course and the side drift of the body. 

The behaviour of the pitch of the body as it moves through the thermal, and also the change in the 
trajectory of motion in the vertical plane (the dependence of the altitude of flight on the distance) is 
not much different from the case of motion in the plane of symmetry of the thermal, considered in [2]. 

When modelling the spatial motion of a body through a thermal an interesting effect was obtained, 
arising from the possible strong deviation of the body from its course. This effect is also due to a shift 
in the centre of pressure when it enters the region of heated gas. In Fig. 3 we show projections of the 
trajectory of the body onto the horizontal plane. The X axis is directed along the projection of the velocity 
vector onto the plane of the local horizon at the initial instant of time, the Z axis is determined by the 
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vector r at the initial instant, and the Y axis is orthogonal to the X axis, so that the unit vectors of X, Y 
and Z axes form a r~ight triple. When the body moves through a thermal the "wind", due to the flow in 
the region of the thermal,  has only a positive component  on the Y axis. When Lc = 50 cm the body, 
correspondingly, is easily deflected to the left of the direction of the "wind" by the free stream (the 
continuous curve in Fig. 3). 

Another  situatio:a occurs when Lc = 140 cm. Here  the body, on moving through the thermal, is 
deviated to the right in the opposite direction of the free stream (the dashed curve in Fig. 3). This, at 
first sight, paradoxical result can be explained as follows. Due to the shift of the centre of  pressure and 
its closeness to the centre of mass, the body becomes inert to rotating loads. As a result, the turning 
of the body along the flow becomes much slower than in the first version. 

In Fig. 4 we show graphs of  the course angle ¥ as a function of  time, while in Fig. 5 we show graphs 
of the yaw x (the magic between the projections of the vector of the axis of symmetry of the body onto 
the plane of the local horizon and the local parallel) as the function of the time of flight. (The continuous 
curve corresponds to the case when Lc = 50 cm, and the dashed curve corresponds to the case when 
L c = 140 cm . )  

We wish to  thank G.A. Tirskii for his interest. 

R E F E R E N C E S  

1. NABIYEV V. U., LrTYUZHNIKOV S. V. and YAMALEYEV N. K., An effective numerical method of determining the ballistic 
trajectory of a body of revolution moving with supersonic velocity in a stratified atmosphere./)ok/. Ross. Akad. Nauk 336, 3, 
357-360, 1994. 

2. NABIYEV V. U., LrI'YUZHNIKOV S. V. and YAMALEYEV N. K., The motion of a body through a large-scale inhomo- 
geneity in a stratified atmosphere. Pr/kL Mat. Mekh. 59, 3, 435-441, 1995. 

3. MUZAFAROV I. E, TIRSKIY G. A., UTYUZHNIKOV S. V. and YAMALEYEV N. IC, Numerical simulation of the flow 
over a body ttying through thermal in a stratified atmosphere. Int. J. Comput. Fluid. 23, 2, 295--304, 1994. 

4. YAROSHEVSKII "¢. A., The Entry of Satellites into the Atmosphere. Nauka, Moscow, 1988. 
5. AIZERMAN M. A., Classical Mechanics. Nauka, Moscow, 1980. 
6. VASIL'YEVSKII S. A., TIRSKII G. A. and UTYUZHNIKOV S. V., A numerical method of solving the equations of a viscous 

shock layer. Zh. Vychisl. Mat Mat Fiz. 27, 5, 741-750, 1987. 
7. TIRSKIY G. A., U., UTYUZHNIKOV S. V. and YAMALEYEV N. K., Efficient numerical method for simulation of supersonic 

viscous flow past a Munted body at small angle of attack. Int. J. Comput. Fluid. 23, 1, 103--114, 1994. 
8. PANICHKIN I. A. and KIRSHUN V. I., Gas Dynam/cs. Dora Tekhniki, Moscow, 1963. 

Translated by R.C.G. 


